15 | 答疑文章(一):日志和索引相关问题
日志相关
binlog(归档日志)和redo log(重做日志)配合崩溃恢复,在两阶段提交的不同瞬间,MySQL如果发生异常重启,是怎么保证数据完整性的?
Q:这个图不是一个update 语句的执行流程吗,怎么还会调用 commit 语句?
A:
两个“commit”的概念
-
“commit 语句”是指 MySQL 语法中,用于提交一个事务的命令。一般跟begin/start transaction 配对使用。
-
而图中用到的这个“commit 步骤”,指的是事务提交过程中的一个小步骤,也是最后一步。当这个步骤执行完成后,这个事务就提交完成了。
-
“commit 语句”执行的时候,会包含“commit 步骤”。
而这个例子里面,没有显式地开启事务,因此这个 update 语句自己就是一个事务,在执行完成后提交事务时,就会用到这个“commit 步骤“。
分析在两阶段提交的不同时刻,MySQL 异常重启会出现什么现象
如果在图中时刻 A 的地方,也就是写入 redo log 处于 prepare 阶段之后、写 binlog 之前,发生了崩溃(crash),由于此时 binlog 还没写,redo log 也还没提交,所以崩溃恢复的时候,这个事务会回滚。这时候,binlog 还没写,所以也不会传到备库。
在时刻 B,也就是 binlog 写完,redo log 还没 commit前发生 crash,那崩溃恢复的时候 MySQL 会怎么处理?
崩溃恢复时的判断规则:
- 如果 redo log 里面的事务是完整的,也就是已经有了 commit 标识,则直接提交;
- 如果 redo log 里面的事务只有完整的 prepare,则判断对应的事务 binlog 是否存在并完整:
a. 如果是,则提交事务;
b. 否则,回滚事务。
这里,时刻 B 发生 crash 对应的就是 2(a) 的情况,崩溃恢复过程中事务会被提交。
Q:MySQL 怎么知道 binlog 是完整的?
A:一个事务的 binlog 是有完整格式的:
- statement格式的binlog,最后会有COMMIT;
- row格式的binlog,最后会有一个XID event。
另外,在MySQL 5.6.2版本以后,还引入了binlog-checksum参数,用来验证binlog内容的正确性。
对于binlog日志由于磁盘原因,可能会在日志中间出错的情况,MySQL可以通过校验checksum的结果来发现。所以,MySQL还是有办法验证事务binlog的完整性的。
Q:redo log 和 binlog 是怎么关联起来的?
A:
它们有一个共同的数据字段,叫 XID。崩溃恢复的时候,会按顺序扫描 redo log:
- 如果碰到既有 prepare、又有 commit 的 redo log,就直接提交;
- 如果碰到只有 parepare、而没有 commit 的 redo log,就拿着 XID 去 binlog 找对应的事务。
Q:处于 prepare 阶段的 redo log 加上完整 binlog,重启就能恢复,MySQL 为什么要这么设计?
A:这个问题和数据与备份的一致性有关。在时刻B,也就是 binlog 写完以后 MySQL 发生崩溃,这时候 binlog 已经写入了,之后就会被从库(或者用这个 binlog 恢复出来的库)使用。所以,在主库上也要提交这个事务。采用这个策略,主库和备库的数据就保证了一致性。
Q:如果这样的话,为什么还要两阶段提交呢?干脆先 redo log 写完,再写 binlog。崩溃恢复的时候,必须得两个日志都完整才可以。是不是一样的逻辑?
A:
回答:其实,两阶段提交是经典的分布式系统问题,并不是MySQL独有的。
如果必须要举一个场景,来说明这么做的必要性的话,那就是事务的持久性问题。
对于InnoDB引擎来说,如果redo log提交完成了,事务就不能回滚(如果这还允许回滚,就可能覆盖掉别的事务的更新)。而如果redo log直接提交,然后binlog写入的时候失败,InnoDB又回滚不了,数据和binlog日志又不一致了。
两阶段提交就是为了给所有人一个机会,当每个人都说“我ok”的时候,再一起提交。
Q :不引入两个日志,也就没有两阶段提交的必要了。只用 binlog 来支持崩溃恢复,又能支持归档,不就可以了?
A:意思是只保留 binlog,然后可以把提交流程改成这样:… -> “数据更新到内存” -> “写 binlog” -> “提交事务”,是不是也可以提供崩溃恢复的能力?
不可以。
历史原因: InnoDB 并不是 MySQL 的原生存储引擎。MySQL 的原生引擎是 MyISAM,设计之初就有没有支持崩溃恢复。InnoDB 在作为 MySQL 的插件加入 MySQL 引擎家族之前,就已经是一个提供了崩溃恢复和事务支持的引擎了。InnoDB 接入了 MySQL 后,发现既然 binlog 没有崩溃恢复的能力,那就用 InnoDB 原有的 redo log 好了。
实现上的原因:
假设只用binlog
这样的流程下,binlog 还是不能支持崩溃恢复的。binlog 没有能力恢复“数据页”。
如果在图中标的位置,也就是 binlog2 写完了,但是整个事务还没有 commit 的时候,MySQL 发生了 crash。
重启后,引擎内部事务 2 会回滚,然后应用 binlog2 可以补回来;但是对于事务 1 来说,系统已经认为提交完成了,不会再应用一次 binlog1。
但是,InnoDB 引擎使用的是 WAL 技术,执行事务的时候,写完内存和日志,事务就算完成了。如果之后崩溃,要依赖于日志来恢复数据页。
也就是说在图中这个位置发生崩溃的话,事务 1 也是可能丢失了的,而且是数据页级的丢失。此时,binlog 里面并没有记录数据页的更新细节,是补不回来的。
如果要说,优化一下 binlog 的内容,让它来记录数据页的更改可以吗?但,这其实就是又做了一个 redo log 出来。所以,至少现在的 binlog 能力,还不能支持崩溃恢复。
Q:那能不能反过来,只用 redo log,不要 binlog?
A:如果只从崩溃恢复的角度来讲是可以的。你可以把 binlog 关掉,这样就没有两阶段提交了,但系统依然是 crash-safe 的。
但 binlog 有着 redo log 无法替代的功能。
一个是归档。redo log 是循环写,写到末尾是要回到开头继续写的。这样历史日志没法保留,redo log 也就起不到归档的作用。
一个就是 MySQL 系统依赖于 binlog。binlog 作为 MySQL 一开始就有的功能,被用在了很多地方。其中,MySQL 系统高可用的基础,就是 binlog 复制。
还有很多公司有异构系统(比如一些数据分析系统),这些系统就靠消费 MySQL 的binlog 来更新自己的数据。关掉 binlog 的话,这些下游系统就没法输入了。
Q:redo log 一般设置多大?
A:redo log 太小的话,会导致很快就被写满,然后不得不强行刷 redo log,这样WAL 机制的能力就发挥不出来了。直接将 redo log 设置为4 个文件、每个文件 1GB 。
Q:正常运行中的实例,数据写入后的最终落盘,是从 redo log 更新过来的还是从 buffer pool 更新过来的呢?
A:
实际上,redo log 并没有记录数据页的完整数据,所以它并没有能力自己去更新磁盘数据页,也就不存在“数据最终落盘,是由 redo log 更新过去”的情况。
-
如果是正常运行的实例的话,数据页被修改以后,跟磁盘的数据页不一致,称为脏页。最终数据落盘,就是把内存中的数据页写盘。这个过程,甚至与 redo log 毫无关系。(指落盘的过程)
-
在崩溃恢复场景中,InnoDB 如果判断到一个数据页可能在崩溃恢复的时候丢失了更新,就会将它读到内存,然后让 redo log 更新内存内容。更新完成后,内存页变成脏页,就回到了第一种情况的状态。
Q:redo log buffer 是什么?是先修改内存,还是先写 redo log文件?
A:
在一个事务的更新过程中,日志是要写多次的。比如下面这个事务:
begin;
insert into t1 ...
insert into t2 ...
commit;
这个事务要往两个表中插入记录,插入数据的过程中,生成的日志都得先保存起来,但又不能在还没 commit 的时候就直接写到 redo log 文件里。
所以,redo log buffer 就是一块内存,用来先存 redo 日志的。也就是说,在执行第一个insert 的时候,数据的内存被修改了,redo log buffer 也写入了日志。但是,真正把日志写到 redo log 文件(文件名是 ib_logfile+ 数字),是在执行 commit语句的时候做的。
这里说的是事务执行过程中不会“主动去刷盘”,以减少不必要的 IO 消耗。但是可能会出现“被动写入磁盘”,比如内存不够、其他事务提交等情况。
业务设计问题
业务上有这样的需求,A、B 两个用户,如果互相关注,则成为好友。
设计上是有两张表,一个是 like 表,一个是 friend 表,like 表有 user_id、liker_id 两个字段,我设置为复合唯一索引即 uk_user_id_liker_id。语句执行逻辑是这样的:
以 A 关注 B 为例:
第一步,先查询对方有没有关注自己(B 有没有关注 A)
select * from like where user_id = B and liker_id = A;
如果有,则成为好友
insert into friend;
没有,则只是单向关注关系
insert into like;
但是如果 A、B 同时关注对方,会出现不会成为好友的情况。因为上面第 1步,双方都没关注对方。第 1 步即使使用了排他锁也不行,因为记录不存在,行锁无法生效。请问这种情况,在 MySQL 锁层面有没有办法处理?
即:在并发场景下,同时有两个人,设置为关注对方,就可能导致无法成功加为朋友关系。
模拟出表:
PS:业务根本就是保证“我一定会插入重复数据,数据库一定要要有唯一性约束”,这时直接建唯一索引。不用考虑在“业务开发保证不会插入重复记录”的情况下,着重要解决性能问题的时候,才建议尽量使用普通索引。
CREATE TABLE `like` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`liker_id` int(11) NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uk_user_id_liker_id` (`user_id`,`liker_id`)
) ENGINE=InnoDB;
CREATE TABLE `friend` (
id` int(11) NOT NULL AUTO_INCREMENT,
`friend_1_id` int(11) NOT NULL,
`firned_2_id` int(11) NOT NULL,
UNIQUE KEY `uk_friend` (`friend_1_id`,`firned_2_id`)
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
由于一开始 A 和 B 之间没有关注关系,所以两个事务里面的 select 语句查出来的结果都是空。
因此,session 1 的逻辑就是“既然 B 没有关注 A,那就只插入一个单向关注关系”。session 2 也同样是这个逻辑。
这个结果对业务来说就是 bug 了。因为在业务设定里面,这两个逻辑都执行完成以后,是应该在 friend 表里面插入一行记录的。
如提问里面说的,“第 1 步即使使用了排他锁也不行,因为记录不存在,行锁无法生效”。不过,使用另外一个方法,来解决这个问题。
首先,要给“like”表增加一个字段,比如叫作 relation_ship,并设为整型,取值 1、2、3。
值是 1 的时候,表示 user_id 关注 liker_id;
值是 2 的时候,表示 liker_id 关注 user_id;
值是 3 的时候,表示互相关注
然后,当 A 关注 B 的时候,逻辑改成如下所示的样子:
应用代码里面,比较 A 和 B 的大小,如果 A<B,就执行下面的逻辑:
begin; /* 启动事务 */
insert into `like`(user_id, liker_id, relation_ship) values(A, B, 1) on duplicate key update relation_ship=relation_ship | 1;
select relation_ship from `like` where user_id=A and liker_id=B;
/* 代码中判断返回的 relation_ship,
如果是 1,事务结束,执行 commit
如果是 3,则执行下面这两个语句:
*/
insert ignore into friend(friend_1_id, friend_2_id) values(A,B);
commit;
如果 A>B,则执行下面的逻辑
begin; /* 启动事务 */
insert into `like`(user_id, liker_id, relation_ship) values(B, A, 2) on duplicate key update relation_ship=relation_ship | 2;
select relation_ship from `like` where user_id=B and liker_id=A;
/* 代码中判断返回的 relation_ship,
如果是 2,事务结束,执行 commit
如果是 3,则执行下面这两个语句:
*/
insert ignore into friend(friend_1_id, friend_2_id) values(B,A);
commit;
这个设计里,让“like”表里的数据保证 user_id < liker_id,这样不论是 A 关注 B,还是B 关注 A,在操作“like”表的时候,如果反向的关系已经存在,就会出现行锁冲突。
然后,insert … on duplicate 语句,确保了在事务内部,执行了这个 SQL 语句后,就强行占住了这个行锁,之后的 select 判断 relation_ship 这个逻辑时就确保了是在行锁保护下的读操作。
操作符 “|” 是按位或,连同最后一句 insert 语句里的 ignore,是为了保证重复调用时的幂等性。???
这样,即使在双方“同时”执行关注操作,最终数据库里的结果,也是 like 表里面有一条关于 A 和 B 的记录,而且 relation_ship 的值是 3, 并且 friend 表里面也有了 A 和 B 的这条记录。
Q:???
我们创建了一个简单的表 t,并插入一行,然后对这一行做修改。
CREATE TABLE `t` (
`id` int(11) NOT NULL primary key auto_increment,
`a` int(11) DEFAULT NULL
) ENGINE=InnoDB;
insert into t values(1,2);
这时候,表 t 里有唯一的一行数据 (1,2)。假设,现在要执行:
update t set a=2 where id=1;
结果:
结果显示,匹配(rows matched)了一行,修改(Changed)了0行。
仅从现象上看,MySQL内部在处理这个命令的时候,可以有以下三种选择:
- 更新都是先读后写的,MySQL 读出数据,发现 a 的值本来就是 2,不更新,直接返回,执行结束;
- MySQL 调用了 InnoDB 引擎提供的“修改为 (1,2)”这个接口,但是引擎发现值与原来相同,不更新,直接返回;
- InnoDB 认真执行了“把这个值修改成 (1,2)"这个操作,该加锁的加锁,该更新的更新。
你觉得实际情况会是以上哪种呢?你可否用构造实验的方式,来证明你的结论?进一步地,可以思考一下,MySQL 为什么要选择这种策略呢?
A:
答案应该是选项 3,即:InnoDB 认真执行了“把这个值修改成 (1,2)"这个操作,该加锁的加锁,该更新的更新。
第一个选项是,MySQL 读出数据,发现值与原来相同,不更新,直接返回,执行结束。这里可以用一个锁实验来确认。
假设,当前表 t 里的值是 (1,2)。
session B 的 update 语句被 blocked 了,加锁这个动作是 InnoDB 才能做的,所以排除选项 1。
第二个选项是,MySQL 调用了 InnoDB 引擎提供的接口,但是引擎发现值与原来相同,不更新,直接返回。用一个可见性实验来确认。
假设当前表里的值是 (1,2)。
session A 的第二个 select 语句是一致性读(快照读),它是不能看见 session B 的更新的。
现在它返回的是 (1,3),表示它看见了某个新的版本,这个版本只能是 session A 自己的 update 语句做更新的时候生成。
文章评论